Evaluation of Measurement Uncertainty for Testing Laboratories

ISO/IEC 17025:2017 7.6

Discussion Points

Measurement uncertainty

Non negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information

(VIM: 2012, 2.26)

WHAT IS UNCERTAINTY

Standard Requirements

IDENTIFY CONTRIBUTIONS

EVALUATE MEASUREMENT UNCERTAINTY

Standard Requirement

IDENTIFY CONTRIBUTIONS

IDENTIFY CONTRIBUTIONS

Example for Pharmaceutical Analysis

Traple, Saviano, Francisco, Lourenço, Measurement uncertainty in pharmaceutical analysis and its application, Journal of Pharmaceutical Analysis, Volume 4, Issue 1, 2014,

Standard Requirement

EVALUATE MEASUREMENT UNCERTAINTY

GUM Approach

- Define measurand
- Identify sources of uncertainty
- Quantify each source
- Identify significant factors
- Determine probability distributions
- Divide component by appropriate divisor for standard uncertainties
- Calculate combined standard uncertainty (u)
- Calculate expanded uncertainty (U)

Pros/Cons to Approach

Data Driven Approaches

- NORDTEST NT TR 537 "Handbook for calculation of measurement uncertainty in environmental laboratories"
- ISO 21748 "Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation"
- ISO 11352 "Water quality Estimation of measurement uncertainty based on validation and quality control data"

NORDTEST NT TR 537 edition 4

Single Lab

http://www.nordtest.info/wp/2017/11/29/handbook-for-calculation-of-measurement-uncertainty-inenvironmental-laboratories-nt-tr-537-edition-4/

Nordtest

Combined Std Uncertainty

 $u_{\rm c} = \sqrt{u(Rw)^2} + u(bias)^2$ Within lab **Bias** Reproducibility

Nordtest Approach

- Define measurand
- Quantify within lab reproducibility
- Quantify bias
- Convert to standard uncertainties
- Combine standard uncertainties
- Calculate expanded uncertainty

Reproducibility

- Includes sample prep
- Homogenous sample
- Sufficient timeframe
- Concentration match
- Matrix match
- Enough replicate measurements

Bias

- Reliable reference value
- Include sample preparation
- Matrix match
- Sufficiently long timeframe
- Concentration range match
- Homogeneous sample
- Large number of replicate measurements

Bias from CRMs use

$$u_{bias} = \sqrt{(RMS_{bias})^2 + u(C_{ref})^2}$$

$$Average Bias$$

$$Average uncertainty of reference values
From Certificate$$

$$RMS_{bias} = \sqrt{\sum (RMS_{bias})^2/n}$$

Nordtest

Combined Std Uncertainty

$$u_{\rm c} = \sqrt{u(Rw)^2 + u(bias)^2}$$

Within lab Reproducibility

Bias

Pros/Cons to Approach

Pros

- Assesses method performance of lab
- Covers the analytical process
- Uses QC data

Cons

- Not IDing of sources (required by standard)
- Single Estimate may not be feasible

In Summary

IDENTIFY CONTRIBUTIONS

EVALUATE MEASUREMENT UNCERTAINTY

Thank You!

Matthew Sica PJLA Testing Program Manager msica@pjlabs.com

www.pjlabs.com

